Scientists at the University of East Anglia have discovered a rogue gene which – if blocked by the right drugs – could stop cancer in its tracks.

It is hoped the research will lead to new drugs that halt the critical late stage of the disease when cancer cells spread to other parts of the body.

The culprit gene – known as WWP2 - is found inside cancer cells. It attacks and breaks down a natural inhibitor in the body which normally prevents cancer cells spreading.

The UEA team found that by blocking WWP2, levels of the natural inhibitor are boosted and the cancer cells remain dormant.

If a drug was developed that deactivated WWP2, conventional therapies and surgery could be used on primary tumours, with no risk of the disease taking hold eleswhere.

Lead author Andrew Chantry, of UEA's School of Biological Sciences, said the discovery could lead to the development of a new generation of drugs within the next decade that could be used to stop the aggressive spread of most forms of the disease, including breast, brain, colon and skin cancer.

He said: 'The challenge now is to identify a potent drug that will get inside cancer cells and destroy the activity of the rogue gene.

'This is a difficult but not impossible task, made easier by the deeper understanding of the biological processes revealed in this study.'

The research was funded by UK-based charity the Association of International Cancer Research (AICR), with extra support from the Big C Charity and the British Skin Foundation.